Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	BS	25-11-2020		

CONTINUOUS INTERNAL EVALUATION- 2

Dept: BS	Sem / Div: III/A & B	Sub: Transform Calculus, Fourier Series and Numerical Techniques.	S Code: 18MAT31	
Date: 01-12-2020	Time: 9:30-11:00 am	Max Marks: 50	Elective: N	

Note: Answer any 2 full questions, choosing one full question from each part.

-	0	Questions	Marks	RBT	COs
	N				
	PART A				
.	L a	Evaluate the following			
		(i) $L[\sin t \cdot \sin 2t \cdot \sin 3t]$ (ii) $L\left[3^t + \frac{\cos 2t - \cos 3t}{t} + t \sin t\right]$	8	L2	CO1
	b	Find L{f(t)} when $f(t) = \begin{bmatrix} E, & 0 \le t \le a \\ -E, & a \le t \le 2a \end{bmatrix}$ where f(t) is periodic function with period is 2a.	8	L3	CO1
	C	Using convolution theorem obtain the inverse Laplace transform of $\frac{s^2}{(s^2 + a^2)^2}$	9	L2	CO1
		OR			
-	2 a	$\begin{array}{llllllllllllllllllllllllllllllllllll$	8	L2	CO1
ľ	b	Find the inverse Laplace transform of	8	L2	CO1
		(i) $\frac{s+5}{s^2-6s+13}$ (ii) $\cot^{-1}[\frac{s}{a}]$			
ſ	С	Solve the differential equation using the Laplace transform method.			
		$y''+4y'+3y = e^{-t}$ given $y(0) = y'(0) = 1$	9	L2	CO1
		PART B			
	3 a	Find the inverse z-transform of $\frac{z^3-20z}{(z-2)^3(z-4)}$	8	L3	CO3
	b	Solve the difference equation $u_{n+2}+2u_{n+1}+u_n=n$ with $u_0=0$, $u_1=0$ by using Z-transforms	8	L3	CO3
	C	Given that $\frac{dy}{dx} = x^2 + y^2$ and y (0) =1, to find an approximate value of y	9	L2	CO4

Prepared by: Ms. Madhavi R Pai

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagayi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	BS	25-11-2020		

CONTINUOUS INTERNAL EVALUATION- 2

at x=0.1 and x=0.2 by Taylor's series method.			
UR			
4 a Solve the following difference equation $u_{n+2} - 3u_{n+1} + 2u_n = 2^n$	with 8	L3	CO3
$u_0 = 0, u_1 = 1$ by using Z-transforms.			
b Find the inverse z-transform of $\frac{2z^2+3z}{(z+2)(z-4)}$	8	L3	CO3
c Use modified Euler 's method to find y (0.1) & y (0.2) given			
$\frac{dy}{dx} = x - y^2$, y(0) =1 by taking h=0.1. Perform two iterations in	each 9	L2	CO4
step.			